
1

This section covers the MIPS instruction set.

2

+ I am going to break down the instructions into two types.

+ a machine instruction which is directly defined in the MIPS architecture and
has a one to one correspondence with a single instruction bit encoding. Most
of these instruction are designed to execute in a single cycle as long as there
are on data dependencies.

+ then there are macro instructions. These instructions are supplied by the
assembler to make assemble coding easier. These instructions can be a
simple as an alias to a machine instruction or translated into a series of
machine instructions.

While the macro instruction do make it easier to write assemble programs
they will make it more confusing to debug an assemble program. This is
because when a debugger dissembles a stream of instructions from memory
it will list them out a actual machine instructions and not translate them back
into the macro instruction they came from.

3

Here are some facts you should know before I begin to tell you more about
the instructions.

+ for the MIPS32 architecture Instructions have a fixed length of 32 bits and
are always aligned in memory on a word boundary.

+ In the MIPs architecture there are 32 General purpose registers

+ two of which are special. GPR0 will always reads 0 which is useful when
you are comparing a value to 0 because it is already in a register. GPR31 is
reserved for the return address from a Jump and link instruction. All other
registers can be used for either address or data.

+ Instructions can have three operands,

+ 2 source registers and one destination register.

+ The immediate instructions have 16 immediate value instead of one of the
source registers. The assembler does allow for some instructions to be
abbreviated to have only 2 operands I’ll give examples when I get to those
instructions.

+ Arithmetic instructions operate on whole registers only,

+ there is no half word or byte arithmetic.

+ Some instruction have 32 or 64 bit versions.

+ Double length operands and results will go into the Hi and Lo registers that are not
part of the General purpose registers. These registers are both 32bits wide and HI
will hold the high order bits Lo will hold the low order bits.

3

4

+ Hardware floating Point is an optional feature

+ this unit has its own registers

+ which are interlocked in the pipe line so instructions dependent on floating
point results will stall and wait for completion of the floating point operation

Floating point instructions are not covered in this section.

5

+ There is only one addressing mode and that is register plus a signed
immediate 16 bit off set this plus or minus 32K covers a 64K range of
addresses.

+ All address are aligned to their data type boundary.

+ Byte or a char of course are 1 byte and aligned to a byte boundary.

+ Halfwords or shorts are 2 bytes and aligned to a 2 byte boundary,

+ Words, int or long are 4 bytes and aligned to a 4 byte boundary.

+ all offset values are in bytes

6

+ Load instructions will always incur at least a one cycle delay even if it hits in
the data cache.

+ The core pipeline is interlocked on the completion of the load data which
will cause the processor to stall an instruction if that instruction uses the
register the data is being loaded into.

+ compliers will try to avoid using data right after a load by trying to find a non
dependent instruction to execute after a load.

7

All load instructions use a destination register and a source register with a
signed immediate offset. Each type of load instruction has a signed and
unsigned version. The sighed version is signed extended and the unsigned
version designated by a U is zero extended.

+The Load Byte instruction loads a byte from any address into the least
significant byte of the destination register.

+The Load Halfword instruction loads a halfword from a halfword aligned
address into the least significant bytes of the destination register.

+The Load word instruction loads a word from a word aligned address the
destination register.

All store instructions use a source register and a destination register with a
signed immediate offset.

+ store byte stores the least significant byte in the source register to any
address

+ store halfword stores the 2 least significant bytes in the source register to a
halfword aligned address

+ store word stores the contents of the source register to a word aligned address.

7

8

All load instructions use a destination register and a source register with a
signed immediate offset. Each type of load instruction has a signed and
unsigned version. The sighed version is signed extended and the unsigned
version designated by a U is zero extended.

+The Load Byte instruction loads a byte from any address into the least
significant byte of the destination register.

+The Load Halfword instruction loads a halfword from a halfword aligned
address into the least significant bytes of the destination register.

+The Load word instruction loads a word from a word aligned address the
destination register.

All store instructions use a source register and a destination register with a
signed immediate offset.

+ store byte stores the least significant byte in the source register to any
address

+ store halfword stores the 2 least significant bytes in the source register to a
halfword aligned address

+ store word stores the contents of the source register to a word aligned address.

8

9

Load Link and Store conditional instructions provide very basic semaphore
operations. For example when a device driver is accessing a part of shared
memory that it shares with an interrupt routine.

+ the Load Link and Store conditional instruction sequence provides a way to
implement a atomic read modify write operation

+ you can have one active Load Link Store conditional sequence active at a
time.

+ If another Load Link is executed between a Load Link Store conditional pair
the Store conditional from the original pair will fail.

+ the Read modify write sequence is completed by a subsequent Store
conditional which will either succeed in the store or fail depending on the
detection of conditions in-between which may have cause the memory
location to be altered.

+ For a single processor system any exception return or ERET in-between a
Load Link and Store conditional pair will cause the Store conditional to fail.

10

Here are some additional failure condition that depend on the type of MIPS
Core being used

+ For a Multi threaded enabled core

+ if any thread completes a store into the same cache line as an active Load
Link Store conditional sequence or the thread executing the sequence is
restarted the Store conditional will fail

+ In a multi core system using the MIPS Memory Coherence Manager
hardware option any processor that writes into the same cache line will cause
the Store conditional to fail

+ In a M4K implementation the sync instruction is externalized to allow
ordering of memory writes by other memory elements in the system. If the
sync signal is utilized like this in your system then any write by any memory
element to the 2K byte memory region that contains the word being written
will cause the Store conditional to fail.
STOP! Do not include in Video presentation:

For a MT enabled core

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

•A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

•The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous region of virtual
memory. (The region does not have to be aligned, other than the alignment required for instruction words.)

The following conditions must be true or the result of the SC is UNPREDICTABLE:

•Execution of SC must have been preceded by execution of an LL instruction.

•On coherent core - An RMW sequence executed without intervening events that would cause the SC to fail must use the
same address in the LL and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.

10

11

+ When an Load Link enters the instruction pipeline it starts an active Read
Modify Write sequence replacing any other sequence that was active.

+ Load Link bit in the CP0 register is set

+ Execution continues until a Store conditional instruction is executed

+ If in-between the Load Link and Store conditional , there is no exception
or a coherent store completed by another processor or coherent I/O module,
into the block of synchronizable physical memory containing the word, the
store will succeed.

+ A 1, indicating success, is written into source register .

+ Otherwise, memory is not modified and a 0, indicating failure, is written
into source register.

13

16

Normal loads and stores in the MIPS architecture must be aligned; halfwords
may be loaded only from 2-byte boundaries and words only from 4-byte
boundaries. A load instruction with an unaligned address will produce an
Address Error Exception so you should install a exception handler. This
exception handler could emulate the desired load operation and hide the fact
that the load was not aligned from the application. The exception handler
could do this with a series of byte loads, shifts, and adds but the is a easier
and quicker way.

Here is an example of handling a unaligned store with a combination of Load
Word Left and Load Word Right to get the job done with two instructions.

+ First use a Load Word left to load the most significant two bytes of the
unaligned address into the most significant bytes of the destination register.

+ For this example the unaligned word is in bytes 2,3,4 and 5. S1 is the
destination register and the address being loaded from, is address 0 with a
offset of 2.

+ to make it clear about what is happening before the load starts S1 contains
a hex 09 08 07 and 06

+ after the load word left you can see bytes 0 and 1 now contain 0c and 0D which
was the value in the most significant bytes of the unaligned address.

16

17

+ Next use a Load Word right to load the least significant two bytes of the
unaligned address into the least significant bytes of the destination register.

+ the least significant unaligned bytes are in are in bytes 4 and 5. S1 is the
destination register and the address being loaded from is address 0 with a
offset of 4.

+ to make it clear about what is happening before the load starts S1 contains
a hex 0C 0D which we already moved there using the load work Left
instruction and 07 and 06 in the least significant bytes

+ after the load word left you can see bytes 2 and 3 now contain 0E and 0F
which was the value in the least significant bytes of the unaligned address.

18

We see here the syntax of the Load word Left and right that I have already
shown you in the example

+ Here is the syntax Store Word Right and Left instruction that will store a
word from a register to an unaligned address.

19

20

I’ll now talk about the Arithmetic Instructions.

+ The rule to remember is that all instructions use register length arithmetic so
in the case of MIPS Core CPUs that means 32 bit arithmetic.

+ there is no byte or halfword arithmetic

+ double length results from multiply and divide instructions are placed in two
special registers called HI and LO

+ the 4 least significant bytes go into the Lo register

+ and the 4 Most significant bytes go into the HI register

There are additional instructions to move the values from these register into a
General Purpose Register which I will cover later

21

I’ll now go over the basic arithmetic instructions. Each one will have a signed
and unsigned version. The unsigned version will end in a U.

+ First the simple add instruction which takes two registers and adds them
together and places the result in a destination register.

+ Next is an add immediate which takes a 16 bit immediate value and adds
it to the contents of a register and places the result in a destination register.

+ The subtract instruction subtraction subtracts one register value from
another and places the result in a destination register. As you can see here
there is no subtract immediate you can do that using the add immediate
instruction and just supply a negative number.

+ The Multiply instruction multiplies the value in two registers and places the
result in the HI and LO registers

+ The divide instruction divides the value in two registers and places the
result in the HI and LO registers

One thing to note: what I am describing is here is actual machine instructions. The
assembler allows a much broader range of these instructions through the use of
instruction macros which the assembler will interrupt into actual machine instructions.
For example The assembler will take either registers or immediate values up to 32
bits and do the right thing. I’ll cover more on this in the assembler section.

21

22

+ The Multiply instruction multiplies the value in two registers and places the
result in the HI and LO registers

+ The divide instruction divides the value in two registers and places the
result in the HI and LO registers

23

Here are the set instructions. These will test two values and place a 1 in the
destination register if the first register is less than the second.

+ the other form of the instruction takes an immediate value instead of the
second register so if the value in the register is less than the immediate
value then the destination register is set to 1.

These machine instructions are used by the assemble to create macros for
branch greater than, branch less than, branch equal and all combinations of
the three.

24

25

There is what I call a simple multiply instruction that will multiply two
registers and place the least significant 32 bits into a general purpose
register

You need to ensure that overflows are either avoided or irrelevant. Because
there is no overflow detection .

Also you cannot intersperse MUL instructions with MADD instructions
because the processor is allowed to use the HI and LO registers even
though the results are stored in a General Purpose Register so any
accumulated results are not preserved across the execution of a MUL
instruction.

+ the machine instruction takes two registers multiplies them together and
but the result in a third register

The assembler will allow you to use immediate values in place of the input
registers.

26

There are two simple instructions to count either zeros or ones starting from
the most significant bit.

+ Count Leading zeros starts at the most significant bit and travels backward
counting zeros until it finds a one

+ Count Leading ones does the opposite starts at the most significant bit
and travels backward counting ones until it finds a zero.

27

Now I’ll cover the logical instructions

+ AND operation compares each bit in the two input registers if both bits are
1 then the corresponding bit in the destination register will be set to 1 other
wise it will be set to 0.

+ OR operation compares each bit in the two input registers if both bits are 0
then the corresponding bit in the destination register will be set to 0 other
wise it will be set to 1

+ NOR operation compares each bit in the two input registers if both bits are
0 then the corresponding bit in the destination register will be set to 1 other
wise it will be set to 0

+ XOR operation compares each bit in the two input registers if one and only
one bit is 1 then the corresponding bit in the destination register will be set to
1 other wise it will be set to 0

28

Now for the move instructions

+ There is a move macro which would be used to copy the contents of one
register to another. This translates to a unsigned add of register 0 to the
register to be copied and placing the result in the destination register
effectively making a copy.

+ Next are two instructions that test a register for true or false, 1 or 0 and
conditionally do a register copy. These instructions are normally used in
conjunction with the set instructions to test their result.

+ the last 4 move instructions either move from or to a Hi or Lo registers to a
General purpose register.

29

Shift instructions can be used to move bits around, or used instead of a
multiply if multiplying by a power of 2. They were also used to isolate
particular bits before MIPS32 release 2 but now we have insert and extract
instructions that do that much more efficiently.

+ The shift left logical will shift the value in the source register to the left by
the immediate value given, filling the bits with zeros. The Shift Left Logical is
most notably looks the same as a nop because a Nop is instruction code is
all zeros and the instruction code for SLL is also a zero so a Shift Left
Logical where GPR 0 is both the source and destination register and the shift
amount is 0 interrupts as the same as a nop. It also looks like the super
scalar nop when the immediate value is 1 for much the same reason.

The shift left variable is almost the same but instead of a immediate value
you provide a variable value in a register.

And of course there are the equivalent shift right instructions

There are also right shift arithmetic instructions that will preserve the sigh
value with the shift instead of just zero filling.

30

Branches change the instruction stream to a different path usually based on a
conditional evaluation.

+ The processor needs one cycle to install the new program counter for a
taken branch

+ so instead of letting this cycle go to waist the processor will always execute
the instruction that follows the branch. This is a good place to do a loop
increment.

+The assembler will fill this Branch delay slot with an instruction of it’s choice.
If that is not what you want you can use the set .noreorder directive to the
assembler around areas of code where you want to hand fill the delay slots.

+ If you do this, be careful not to place any branch, Jump, Error return, Debug
Error return or wait instruction in a delay slot.

+ Branches have a maximum of 128K plus or minus displacement from the
current PC location .

+ The 16 bit immediate field is automatically shifted left two bits to align with a
four byte instruction address giving it a range of 18 signed bits.

31

+ There is an exception to the rule that the branch always executes the
instruction in the branch delay slot. In the case of a branch likely instruction
the instruction in the branch delay slot is only executed if the branch is taken
and not if the branch condition falls through.

+ Branch likely instructions are useful in loops where the code will loop
several times through and the delay slot can be used to increment the
counter.

+ Most branch instructions have a likely equivalent and are distinguished by
ending in a “L”

32

Here are the machine branch instructions

+ Branch Equal will branch to the PC offset if the two source registers are
equal

Branch Not Equal will branch to the PC offset if the two source registers are
not equal

+ Branch Less than zero will branch to the PC offset if source register is
less then or equal to zero

Branch Greater than zero branch to the PC offset if source register is greater
then or equal zero

+ Branch Less than zero and Link will branch to the PC offset and set the
return address register to the next instruction after the delay slot if source
register is less then or equal to zero

Branch Greater than zero and link will branch to the PC offset and set the
return address register to the next instruction after the delay slot if source
register is greater then or equal to zero

33

Here are the assembler macro branch instructions that fill in any other
possible branch conditions. Remember these are made up of one or usually
more machine instructions. I won’t go over each one of these but you could
pause now and review them at your leisure. These instructions will use the
AT register GPR 1 so your code should leave this register alone. If your code
uses the AT register the be sure to “set noat” the assembler will then give
you a error if you use a macro instruction the uses AT.

Stop for video

+ branch to the PC offset if the two source registers are equal to zero

branch to the PC offset if first source register is greater then or equal the
second source register

+ branch to the PC offset if first source register is greater then the second
source register

branch to the PC offset if first source register is less then or equal the
second source register

+ branch to the PC offset if first source register is less then the second
source register

branch to the PC offset and set the return address register to the next instruction after
the delay slot if source register is less then zero

+branch Unconditional does a PC relative jump

Branch and Link unconditional does a PC relative jump and set the return address in
the return address register

33

35

Lets talk about Jump instructions There are three types of jump instructions

+ Jump immediate instruction will jump to a absolute address with the current
256 megabyte PC-region.

+ You supply the instruction a 26 bit immediate value. This value is the target
address of the jump shifted to the right by two. It is shifted to the right by two
since all instructions are word aligned and the last two bits of the instruction
address will always be 0. So this instruction uses that fact to pack a 28 bits
address into 26 bits.

+ The current 256 megabyte PC region is defined by the 4 most significant bit
of the address of the Branch Delay slot.

+ So the jump address is the immediate value shifted to the left by 2 and
concatenated with the upper 4 bits of the address of the branch delay slot.

The good news is the assembler allows you to use the label of the jump target
and it does the shifting and concatenating for you.

+ To reach out side the current 256 megabyte PC region you need to use the jump
register instruction.

+ The jump register instruction uses a register that contains a 32 bit absolute
address, so the jump target can be anywhere in the 4 gigabyte address range.

35

36

The Jump and link instruction use to call a subroutine, stores the return
address into

a register. R31 the return address register. Then when the subroutine wants to
return it can execute a Jump Register instruction with R31 to return to the
caller routine.

+ There is a delay slot for jumps. It is the same as it is for branches.

37

To summarize the jump instructions

+The Jump instruction jumps to and address using the immediate value, the
label supplied with the instruction

+The Jump and link instruction does the same as the Jump instruction and in
addition places a return address in the return address register.

+ The jump register instruction jumps to the address in the source register

+ and the jump and link register does the same as the Jump register
instruction and in addition places a return address in the return address
register.

+ adding the dot HB to the Jump and link or a jump and link register will
cause the CPU to stall and wait for all execution and instruction hazards
created by any CoProcessor 0 state changes. I’ll talk more about these
when I talk about the EHB instruction.

39

The System call instruction is use

+ in a OS environment to transfer control from a user program to the to the
OS running in Kernel mode.

+ The system call can a supply a unique number, usually referred to a the
system call number, which the OS can use to determine which OS function is
being requested.

+ This system call number can be retrieved by reading the instruction as data
and extracting the code field. However As we will see the o32 standard uses
an easier method to store and get the call number.

40

Here is a run through of using a system call in Linux that uses the o32
standard.

+ The system call number is put into the v0 register. This makes it easier to
retrieve instead of using the code field in the instruction.

+ The arguments to the system call are passed in the argument registers a0
through a3

+ Any return values can be passed back to the user code through registers v0
and v1

+ In keeping with the o32 standard the OS, Linux in this case, must preserve
registers as if a function call was being preformed.

+ the instruction is called with a immediate value normally the system call
number.

Usually a user program is not concerned with the system call interface
because it would use a standard library to interface with the OS.

41

Trap instructions are programmable conditional exceptions

+ Trap instructions evaluate a condition and can cause an exception.

+ For example an OS can use them for assertions, which are usually
conditions that the OS assumes will never happen.

+ Some forms of the trap instruction can have a 16 bit immediate value to
pass information back to the OS. The OS might use this information to
determine what happened.

42

Since these are very similar to condition branches I have already covered I
will not go into the details of each type of trap instruction.

43

The Break instruction is usually use by debuggers to cause a break in
execution. As the user instructs the debugger to set a breakpoint the
debugger will replace the code at the breakpoint with a break instruction. Then
when the break point happens the exception will turn control over the
debugger. After the debugger has completed what the user wants and the
user has instructed it to continue execution the debugger will put the program
code back and execute it.

+ The break causes an unconditional exception

+ the Core puts address of the break instruction in the CP0 register EPC so, a
debugger will know where the break happened.

+ the instruction can contain a twenty bit value that can be used to pass
information to the exception. For example a debugger could use this as a
indication of what type of break point it was or a pointer to the program
instruction that the break replaced. This information will need to be extracted
from the break instruction word.

+ The break instruction takes one immediate value.

44

A new instruction introduced in MIPS32 Release 2 is the bit extract instruction.

+This instruction can replace a series of instruction that would have previously
been needed to extract a bit or bits from a word. For example you would have
previously need to do shift left and a shift right to extract a bit field to the least
significant bits of a register.

+ The extract instruction takes 4 arguments, the destination register, the
source register, the least significant bit of the field to be extracted and the
number of bits to be extracted.

+ For example to extract 10 bits starting at bit 9 from register s1 to register s0
the assemble code would be “ext s0 s1 9 10”

+ this would start to copy from bit 9 of S1 to

+ bit 0 of register s0 for 10 bits. The remaining bits in register s0 would be 0
filled.

45

The counter part to the extract instruction is the insert instruction

+ as with the extract instruction this replaces several steps in merging a bit
field into a word

+ the syntax for this instruction is the mnemonic ins, then the register to be
merged , the source register that contains the bit field, the least significant bit
in the destination register where the merge will start and the number of bytes
to copy.

+ So to merge 10 bits into register s0 from register s1 starting at bit 9 the
assemble code would be “ins s0 s1 9 10”

+ this would start to copy from bit 0 in register s1

+ to bit 9 in register s0 for 10 bits

46

There two instructions that make interrupt control easier

+ First is the Disable interrupt instruction. This instruction helps by atomically
writing the value of the Status register to a general purpose register and then
clearing the Interrupt Enable bit in the CP0 Status register.

+ The Enable Interrupt instruction writes the value of the status register to a
general purpose register and then sets the interrupt enable bit in the status
register.

Note you might not always what to use the Enable interrupt instruction
particularly if you are nesting interrupts. You might just what to restore the
Status register with the value it had when it entered your interrupt function, so
it would continue with processing any interrupt function that may have
interrupted interrupted.

+ The assembler syntax for each is instruction the destination register where
the Status register will be saved.

47

There is a software breakpoint instruction that works very much like the break
instruction except it causes a debug mode exception which is tied into the
EJTAG controller. A hardware EJTAG probe could use this instruction to set a
breakpoint.

48

There are two instructions that can be used to return from exception handling.

+ The Exception Return instruction will atomically clear the exception bit EXL
in the status register and then jump to the address stored in the Error
Program Counter.

+ the Debug Exception Return instruction returns from a EJTAG debug
exception and then jumps to the address stored in the Debug Error Program
Counter.

+ the syntax for both is just the instruction mnemonic

49

There is a special case where the Error Return instruction will use the Error
Error Program Counter instead of the Error Program Counter.

+ The Error Level bit is set in the status register during a Reset, Soft reset,
Non Maskable Interrupt or a Cache error exception

+ exceptions can happen while processing these exceptions which are usually
not recoverable so using the Error Error Program Counter is a way of not
going into an infinite exception processing loop

50

The MIPs architecture does not allow arithmetic operations to be performed
on anything other than integers. If there is a value that is less than a integer
that needs to be used in an arithmetic expression in must first be made to
look like an integer.

+ This can be done by sign extending a byte or half word.

+ The Sign Extend Byte instruction will propagate bit 7 from bit 8 through 31

+ the Sign Extend Half-word instruction will propagate bit 15 from bit 16
through bit 31

+ You can use the Sign extend half word instruction in-conjunction with Shift
Right arithmetic to sign extend two contiguous half- words

+ first load the two contiguous half words into memory

+ next use the sign extend half-word instruction to sign extend the least
significant half-work and copy the result to another register.

+ then use the shift right arithmetic with a value of 16 to shift the original value
16 bit and sign extend it.

51

There are three instructions that are used to manipulate bits within words.

+ these instructions can be combined to swap the endianess of a word with
just two instructions.

+ The word swap within halfword instruction rotates bytes within both half-
words

+ Rotate word right rotates bits in a word for a given number of bits set by the
immediate value

+ Rotate word right variable is similar but it uses the value in a register
instead of the immediate value to determine the amount of bits to rotate.

Let look at as example of an endianness swap

+ first load the word into a register

+ next swap the bytes in each half-word using the word-swap half-word
instruction

+ then use the Rotate word instruction giving it a immediate value of 16 to swap the
half-words

51

52

There are three instructions that are use in working with Co-Processor zero

+ Move From Co-processor zero moves from a Co-processor zero register,
designated by a register and select numbers, to a general purpose register.

+ Move To Co-processor zero moves a value in a general purpose register to
a Co-processor zero register designated by its register and select numbers

+ The EHB instruction will clear execution Hazard Barriers

+ Hazards are created when the Move to Co-processor zero instruction is
used because there is no guarantee how long it might take for the value
written to be usable by another instruction.

+ When the core executes a EHB instruction it will guarantee the value is safe
to use by waiting for the value to be committed to the register.

You should consult your core’s Software Users Manual, for which actions
cause hazards and how long the Hazard will last. Depending on the action not
all Move to Co-processor zero instructions will cause a hazard and for others

as long as the value that was moved will not be used in a set period of time, a EHB
may not be needed.

52

53

The read hardware register instruction allows access to some of the CP0
Registers while in user mode. Permission to do this is set in the HWREna
register that needs to be setup while the cpu is in Kernel mode.

+ The assembler syntax for this instruction is a destination register and a
operation code

I will use this instruction in a up coming example to get the sync step count,
opcode 1

54

The Sync instruction will stall any future loads and stores until all loads and
stores are coherent through out the system. The use of the sync instruction is
only necessary when memory is being shared between two or more devices
within a system. For example if you are using a DMA controller to send data
out of your system you need to make sure all stores to the uncached shared
memory area between the CPU and the DMA controller have completed
before you start the DMA. In a multi CPU system you may need to make sure
before you load a value from a shared memory region into a CPU that another
CPU doesn’t have a newer value that has not yet been written to the shared
memory for example it may have it in its cache.

+ a sync only affects uncached or cached coherent loads and stores. Cached
loads and stores to non shared memory are no-coherent and you don’t have
to use the sync instruction for these areas.

+ A Sync is need when changing the operating mode between normal and
EJTAG Debug and vise a versa to guarantee changes made to memory
before and after the mode change is visible to both the EJTAG controller and
the CPU.

+ the Sync instruction will stall the CPU until all uncached and cached
coherent loads, stores and refills are completed and all the interim write
buffers are empty.

55

The sync instruction does require external hardware to be able to propagate
the sync signal to the external bus.

+ the Externalized Sync bit in the Config7 register of CoProcessor zero
controls whether or not the sync signal is sent out to the external interface.

+ the exception to this is our 4KE, 4KSD and M4K cores where the signal is
always sent.

+ the assembler syntax is simply sync

56

The SyncI instruction is used to synchronize a data cache line with a
instruction cache line.

+ this is necessary when a program loads another program into memory
because the load instruction only loads the data cache and to execute the
code, the instruction cache for the data region needs to be invalidated so that
when a fetch happens it will get an instruction cache miss and fetch the new
instructions.

+ the SyncI instruction only effects the cache line of the address given so you
will need to loop through all the effected cache lines.

+ You pass the address to the synci instruction using a register with a
immediate offset

57

Here is an example of a assemble function that can be used after code has
been written into memory to synchronize the caches.

+ The function takes 2 inputs, the starting address in register a0 and the size
of the area to sync in bytes

+ calculate the end address

+ get the size of a cache line

+ if the size is 0 we have no caches so no need to syncI so the code will jump
to the return

+ Sync the first address

+ Check to see if it is the last cache line to sync

Use the delay slot to increment the byte count by the step size

And loop back if there is more to do

+ once we have looped through all the cache lines use the sync instruction to
sync any coherent memory so other devices that might be sharing the
memory will see the change

+ and return making sure that any instruction hazards have been cleared

Note the JR.HB instruction could be replaced with JALR.HB, ERET, or
DERET instructions, as appropriate.

58

There are four instructions the control the translation look aside buffer. These
will be covered in detail in a separate TLB section.

59

Like wise there are two instructions the control the cache these will be
covered in detail in a separate section on the Cache.

60

The wait instruction can be used to control the power consumption of the CPU
when there is nothing to do but wait for an interrupt. This instruction will be
cover in detail in a separate section on power.

61

There are two instruction that control reading and writing Shadow register set
since these work with interrupts they are covered in detail in a separate
section for exceptions and interrupts.

